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ASMR age-specific mortality rate

CDR crude death rate

COD cause of death

CRVS civil registration and vital statistics

GBD Global Burden of Disease

HIV/AIDS human immunodeficiency virus/acquired immunodeficiency syndrome 

ICD International Classification of Diseases

ICD 10 International Classification of Diseases 10th edition

IGME Inter-agency Group for Child Mortality Estimation

IHME Institute of Health Metrics and Evaluation

UCOD underlying cause of death

VSPI(Q) Vital Statistics Performance Index for Data Quality

WHO World Health Organization



C
R

V
S

 technical guide

1Guidance for assessing and interpreting the quality of mortality data using ANACONDA | Version 1017-01

About this document
The document is written for users or potential users of ANACONDA (Analysis of Causes of National Deaths for Action), an 
electronic tool for checking the quality of mortality data. Such users are likely to be statisticians and/or analysts in health and 
statistics departments, researchers, or other experts working with mortality data. Since the first version of ANACONDA was 
piloted in 2016, many improvements have been implemented. This guide refers to version 3.0 of the application. Although it is 
likely that further minor development of the tool will happen, the information provided here will remain relevant.

This guidance aims to help users interpret the results of ANACONDA correctly, which may not be easy if they are unfamiliar 
with mortality analysis. The purpose of each of the 10 steps is made clear, and explanations are offered on how to interpret the 
outputs, and what in the data to check and verify. The corrective actions that can be used to correct the data and improve their 
value to policy development are outlined.

A second objective of the guide is to educate users in the principles and approaches of basic mortality analysis. They can then 
better understand how to critically appraise such data and identify common errors in the data. This also builds knowledge 
about the patterns one expects to observe in mortality data according to age, sex and cause of death (COD). Careful 
application of the tool will help to build confidence and skills in the interpretation of mortality statistics, and help people 
avoid making incorrect judgements about the policy value of the data. Why it is important to carry out systematic quality 
assessments of mortality data should be obvious after having read this guide.

This document does not provide instructions about how to use ANACONDA; for that, we recommend the ANACONDA user 
guide (University of Melbourne & Swiss Tropical and Public Health Institute 2017), which provides detailed guidance on getting 
started and running the application. Although not written specifically for those who intend to become trainers in ANACONDA, 
this guide provides important insight into the logic and intent of the various steps in ANACONDA. Additional background 
information and guidance to support those who will teach ANACONDA can be found in ANACONDA: Facilitator’s guide 
(University of Melbourne 2017).
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Background
The ANACONDA tool was jointly developed by the Melbourne School of Population and Global Health at the University of 
Melbourne and the Swiss Tropical and Public Health Institute at the University of Basel. It is part of a series of innovative 
tools developed to improve vital statistics data from civil registration, funded by the Bloomberg Philanthropies Data for 
Health Initiative at the University of Melbourne.

The basis of ANACONDA is the 10 data quality assessment principles first published by the Health Information Systems 
Knowledge Hub at the University of Queensland (AbouZahr et al 2010). These principles were subsequently made into an 
Excel tool named ANACoD (Analysing mortality levels and Causes of Death) by the World Health Organization (WHO).1

ANACONDA differs from ANACoD in a number of important ways with regard to both content and technology. In particular, it:

 n is built on more flexible and reliable software technology (Java/JavaFX) that makes use of open standards and libraries

 n is based on robust software architecture and design principles such as separation of model and view, allowing for easy 
extension of the algorithms and/or the user interface

 n uses an architecture that allows easy deployment to various platforms by providing native packaging and installers, 
including all necessary software prerequisites

 n vastly expands on the set of data quality assessment principles included in ANACoD, especially for the assessment of 
ill-defined and otherwise incorrect or poorly specified International Classification of Diseases (ICD) codes

 n provides a detailed analysis of the CODs that should not be used and are useless for public health analysis

 n allows for more flexible data input formats

 n has more graphs and charts, and includes an export function for these 

 n uses more detailed and comprehensive country-comparator information to assess plausibility

 n includes more standard demographic and health indicators

 n includes an overall summary index of mortality data quality – the Vital Statistics Performance Index for Data Quality, or 
VSPI(Q), adapted from Phillips et al (2014)

 n has an inbuilt data review function where users can enter free text comments and assign an overall status for each step. 
This function also allows users to produce a data quality report at the end of the process.

What is ANACONDA?
The optimal source of mortality and COD statistics for a population is a functioning civil registration system that registers 
all deaths in the country, with all deaths having a medically certified underlying cause of death (UCOD). ANACONDA is 
an easy-to-use electronic tool specifically designed to help users analyse the quality of such routine mortality datasets, to 
understand whether the data are fit for the intended purpose.

ANACONDA analyses the quality of mortality and COD data. It requires only basic computer skills, including familiarity with 
Microsoft Excel. ANACONDA performs the calculations needed for a comprehensive data quality review, and automatically 
generates the associated figures and tables from which a data quality assessment report can be written. However, because 
ANACONDA does not interpret the analyses, it is helpful to have read this guide, particularly if users are not familiar with 
mortality analysis, ICD and Global Burden of Disease (GBD) classifications.

The structure of the tool is logical, and all the computational steps are automated and straightforward. ANACONDA 
starts with a broad overview of the input data, applies some simple checks to the mortality data, followed by a detailed 
assessment of the quality of COD data, and finally computes the VSPI(Q) – the overall index of mortality data quality.

1 www.who.int/healthinfo/anacod/en/

www.who.int/healthinfo/anacod/en
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ANACONDA is specifically designed to be applied to large datasets such as those from civil registries. Even so, it can also be 
used to analyse hospital data, data from longitudinal demographic surveillance sites, or any other data source that routinely 
collects and generates ICD COD data classified by age and sex, including data from verbal autopsies. To benefit from all 
the checks and assessments performed in the first five steps, data for the total population at risk, classified by age and sex, 
need to be provided. If only hospital data are available, the exact population at risk, also referred to as the denominator, can 
usually not be provided.

Although the application of ANACONDA to individual hospital datasets is possible, it may be necessary to combine several 
years of data to assemble a dataset with sufficient numbers of deaths to provide stable distributions for the top 20 or so 
CODs. At least 5 deaths per cause per age group (100 for each age group) are required to avoid distortions in the output 
from ANACONDA. Optimal datasets are those greater than 2000 deaths each for males and females (4000 total). Application 
of ANACONDA to datasets with significantly fewer deaths might lead to misleading outputs.

Note that ANACONDA will not by itself improve the quality of the input data; it is designed to identify problems that need to be 
addressed to improve the value of mortality data for guiding health policies and practices. However, it is expected that users 
who read this guide and apply the tool will build the competence and confidence to critically appraise routine mortality data, 
from whatever source, and that they will be able to identify the intervention strategies necessary to improve them.

Why use ANACONDA?
All countries need accurate and up-to-date mortality data for a variety of purposes, including:

 n informing health and social policy debates 

 n monitoring progress relative to national and global development goals

 n monitoring trends in diseases and injuries

 n evaluating policies designed to improve health outcomes.

However, in many countries, the systems that produce mortality and COD data either do not exist or are poorly developed. 
As a result, the data they produce are often not reliable enough to be used for the purposes listed above. 

As a first step to improving these systems, it is important to gain detailed understanding of the problems with the data, 
particularly with data completeness and diagnostic accuracy. A common concern with any mortality data produced from 
civil registration systems is how reliable they are in describing the actual mortality patterns in the population to which they 
refer. For example, even if a dataset includes all deaths in hospitals, it is important to remember that they are different from 
deaths that occur in the community and, hence, the data cannot be considered to represent the national mortality situation 
(Murray et al 2007).

COD data that have been collected – often at great expense – ought to be of sufficient quality and representativeness to 
be used to their full potential. Poor quality and unrepresentative data can lead to poor health policy decisions and lost 
opportunities to improve population health.

ANACONDA is particularly useful to those who are responsible for routine mortality data collections (eg a civil registration 
and vital statistics (CRVS) system, a health and demographic surveillance site or a Sample Registration System (SRS) in 
which verbal autopsy is assessed by physicians to determine the probable COD), because it allows them to monitor the 
quality of their datasets and pinpoint probable areas of weakness each year. When applied each year monitoring data quality 
with ANACONDA will allow analysts and policy-makers to make greater use of existing, flawed data by understanding 
the probable biases. It will also provide critically important intelligence to guide strategies and interventions designed to 
improve the mortality data system.
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The 10 steps of ANACONDA
Overview
ANACONDA is designed around 10 steps, some with numerous substeps, that users are advised to follow in sequence (see 
Annex 1). These 10 steps can be grouped into four broad categories:

1. data inputs and general background checks (step 1)
2. mortality data (steps 2–5)
3. COD data (steps 6–9)
4. overall data quality index: VSPI(Q) (step 10).

To diagnose possible problems in the mortality input dataset, ANACONDA:

 n tabulates and/or graphs the input data in different ways to assess the plausibility of the data based on fundamental 
demographic and epidemiological relationships

 n calculates the proportion and type of unusable COD codes that are of limited or no value for public health analysis

 n compares the input data (or some summary measure of them) with a global source of demographic and epidemiological 
estimates for the country, or geographic region, to assess consistency

 n allows users to monitor annual changes in the quality of the dataset through VSPI(Q).

To assess plausibility, the national mortality data for a country are compared with the most recent estimates for that country 
or a neighbouring region. Most of the comparators are from the GBD study prepared by the Institute for Health Metrics and 
Evaluation (IHME) in Seattle. Since these are estimates, only major differences should be investigated to check plausibility  
of input data.

The 21 epidemiological and geographical regions used for comparative purposes in ANACONDA are those defined for the 
GBD study (Figure 1).

Figure 1: Global Burden of Disease epidemiological regions

Source: Lozano et al (2013)
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(1) Data inputs and general background checks

Step 1: Basic tabulations of deaths by age, sex and cause of death

The first assessment step in the tool has eight substeps. These are all intended to check the 
consistency of the input data and identify any significant errors in the dataset. It is strongly 
recommended that these be investigated and corrected before applying the other steps.

Substeps 1.1 and 1.2 are introductory and remind users about the sources of their input 
data. The input data should consist of individual death records aggregated by age (using standard 5-year age groups; see 
below), sex and COD (using ICD 10 codes at three or more digits).

The input tabulation of mortality data should include, for each ICD code:

 n the number of deaths for a specified year, or years, where it is necessary to aggregate data from two or more years to 
achieve the minimum number of cases (4000) recommended for application of the tool

 n the number of deaths by sex – in other words, for males and females separately

 n the number of deaths by age at death, using the following standard groupings:

 - those born alive but who died before their first birthday – age in completed months, 0–11

 - those who died aged 1–4 years – age in completed years

 - those who died aged 5–9 years

 - those who died aged 10–14, 15–19, and so on, in 5-year age groups up to 80–84

 - those who died aged 85 and over.

As explained in the user guide (University of Melbourne & Swiss Tropical and Public Health Institute 2017), ANACONDA can 
only be applied if the input mortality data contain the degree of age specificity defined above. If the terminal age group used 
is younger than 85+ (eg 65+), it is recommended that users first redistribute deaths in the terminal age group to estimate 
the likely number of deaths in each 5-year age group up to 85+. This will need to be done for each cause listed in the 
dataset, and separately for males and females. A model to do this can be derived from the age-cause distributions of deaths 
estimated for the GBD study available on the IHME website.2

It is extremely important that deaths are separately tabulated by the above indicated age groupings up to 85+ (Box 1). In 
populations where most deaths occur among the elderly, higher age groups such as 100+ may be encountered. Lower 
terminal age groups such as 65+ may have been appropriate for mortality tabulations 100 years ago, when comparatively 
few people lived longer than 65 years, however, that is not the case today, when the average life expectancy is 70 or above 
for all regions in the world, except the least developed countries in Africa (United Nations 2015). As such, mortality data 
should be tabulated accordingly. If countries are already tabulating data to ages beyond 85, data binning will automatically 
be applied at data entry and the data collapsed so that 85+ will be the terminal age group.

The input population data should be the midyear population for the same year as the mortality data, by sex and age group. 
The mid-period population should be used if the mortality data cover more than 1 year (eg, 30 June 2014 if the calendar 
years 2013–15 are used). Population estimates are generally available from the decennial census and intercensal projections 
produced by the national statistics office of the country in question. These data will be used for the calculation of rates and 
ratios required in steps 2–5. Tabulations for males and females will be analysed separately.

2 https://vizhub.healthdata.org/mortality/age-estimation

1

https://vizhub.healthdata.org/mortality/age
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Box 1: Reporting age at death

It is important that age at death be recorded with precision. A death occurring to a child aged 4 years and 11 
months should be classified in the 1–4 age group. Only when the child has completed the fifth year of life (ie had 
its fifth birthday) should the death be counted in the 5–9 age group. It is usual practice to use 5-year age groups 
except for deaths occurring in children under 5, which are subdivided into those occurring within the first year of 
life (often separately for the first month of life, when risk of death is at its highest) and those occurring in the range 
1–4, given the very different risks of mortality at various childhood ages before 5. 

Precision is also important at older ages, which should continue to be grouped into 5-year categories at least up to 
the age of 85.

It is poor practice to only tabulate age of death to some relatively low terminal age such as 55+ or 65+. 
Increasingly, deaths are occurring after about age 60, and it is extremely important for preventive efforts to 
distinguish between a death at age 80–84 and an adult death at a much younger age, such as 60–64 or 65–69.

The use of these standard 5-year age groupings is also important because the same age groups are used to 
compile census data on population size and distribution, which are used by ANACONDA as denominators for the 
calculation of rates and ratios.

As a side note, because of the importance of accurate data on the age at death, it is recommended to include the 
date of birth, as opposed to just age, in the data collected about each deceased individual.

Substeps 1.3 and 1.4 tabulate the input population and mortality data in the standard 5-year age groups and show 
this graphically as population pyramids. In cases where the source is hospital data, it is not possible to enter any correct 
corresponding population data and so the steps requiring denominators cannot be performed. Both substeps tabulate the 
data and display them as population pyramids to allow users to visually inspect their input data for obvious irregularities –  
for example, large differences between adjacent age groups, gross differences in sex ratios, or deviations from expected 
male and female patterns.

Understanding the local demographic and mortality situation is important for assessing the plausibility of the tabulations 
and graphs produced by the steps that follow.

A population pyramid typically consists of two back-to-back bar graphs, with age groups on the vertical axis and population 
size on the horizontal axis, shown as percentages of the total (Figure 2). The death pyramid for a population is similarly 
constructed, but with the percentages of deaths at each age shown on the horizontal axis (Figure 3).

In most developed countries, the age–sex pyramid is constructed based on annual birth and death data from the civil 
registration system and decennial censuses. In countries where civil registration systems are weak, age–sex population 
pyramids can only be reliably estimated from the census. Intercensal estimates of population size by age and sex generally 
need to be obtained from mortality rates derived from model life tables, which are inherently uncertain. The United Nations 
Population Division generates regular updates on national population sex and age structures, which should be used when 
there is doubt about the reliability of country population data (United Nations 2015).
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Figure 2: Example population pyramid

Figure 3: Example death pyramid
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Understanding substeps 1.3 and 1.4

To interpret the two pyramids, it is helpful to do some basic visual checks.

 n For the population data, is there any age/sex group that accounts for more than 10% of the population?  
If so, verify that the input data are indeed correct, or provide an explanation, since such proportions are  
highly unusual. 

 n By overlaying them, compare the pyramid calculated from the input data with one based on the estimated 
population age–sex structure prepared by the United Nations Population Division for the same year or closest 
match. Major deviations should be investigated. It is important to note that, in all comparisons offered in 
ANACONDA, deviations from a standard that is being used to evaluate the input data do not necessarily 
mean that the input data are incorrect. These global standard mortality and population estimates have been 
prepared using substantial epidemiological and demographic expertise, and large collections of international 
population and mortality data from which expected patterns can, and have, been derived. However, these are 
estimates and may not, in certain cases, reflect the reality of a country’s input data. Such local departures from 
a comparative standard are therefore possible, but unlikely, and should be carefully investigated for plausibility.

 n The mortality input data are shown as an inverted pyramid, and can also be checked visually. Typically, the 
pyramid will show fewer deaths at younger ages (except for children aged 0–4) with progressively increasing 
numbers into old age. It is not unusual for there to be a high proportion of deaths at age 85+ or at the highest 
age group.

 n More males die at younger ages than females, with the reverse being the case at the oldest ages. The death 
pyramid should reflect this.

Substep 1.5 shows the input COD data by disease, for age groups 0–4 and 5+. Apart from being useful for various types 
of analyses, given the different disease patterns for children and adults, this also facilitates the identification of any obvious 
errors in the data.

Understanding substep 1.5

Inspection of the COD patterns of children and adults separately, and ranking these, is a quick way of identifying 
leading diseases in either group or identifying improbable cases. These may include suicides, pregnancies or other 
adult conditions attributed to children, or neonatal conditions in the adult population. These should all be corrected 
before proceeding with the subsequent steps.

Substep 1.6 further refines the age breakdown by compiling the data into broad age groups likely to be of interest for 
various health promotion, and disease and injury-control programs (eg reproductive health, child health and adolescent 
health). These age groups have been defined as follows: 0–4, 5–9, 10–19, 20–24, 25–29, 30–49, 50–69 and 70+.3

This substep groups the input COD data into a shorter list to facilitate overview and plausibility assessment. For this 
tabulation, ANACONDA uses the ICD 10 tabulation list of 113 aggregated disease and injury categories (United Nations 
2015), intended to include all causes likely to be of public health importance. It is a list that is commonly used for ranking 
mortality data to guide public health efforts to address the leading CODs. Stratifying the COD data in age groups facilitates 
understanding and reporting of the leading causes at different stages of life, which are childhood, adolescence, young 
adulthood, adulthood and old age.



C
R

V
S

 technical guide

9Guidance for assessing and interpreting the quality of mortality data using ANACONDA | Version 1017-01

Understanding substep 1.6

Age remains the most important predictor of the risk of death, with epidemiological patterns of disease at different 
ages well established from years of observation. As a result, knowing the age structure of mortality from different 
diseases and conditions is not only important for prevention (eg, adolescent maternal deaths, suicides in young 
adults), but also a way to check the plausibility of the data given the strong age-dependency observed for most 
major CODs. For example, the vast majority of lung cancer deaths should occur at older ages. If the input data 
tabulation shows a different pattern, there are likely to be major problems with misdiagnosis (could these be 
asthma deaths, which are more common at younger ages?) or underreporting of lung cancer deaths among older 
adults.

Users may also prefer to tabulate their input data according to the GBD COD list of some 300 causes (Lozano et al 
2013). This list is used in substep 1.7, which continues to investigate the relationship between age and  
disease patterns.

Substep 1.8 is purely arithmetical, and points out if there are any internal inconsistencies in the data.

(2) Mortality data

Step 2: Crude death rates

The second step calculates the crude death rate (CDR) for males and females, based on the 
input data. As a mortality indicator, the CDR is the simplest measure of population health 
status (Box 2). ANACONDA also uses the CDR as a simple measure of how complete (in 
terms of deaths captured by the system) the mortality data are likely to be. In other words, the 

proportion of deaths are actually reported to authorities. This proportion is known as the ‘completeness’ of registration of 
deaths in a population and is perhaps the most fundamental component of data quality (Philips et al 2014). Input data with  
a significant proportion of unreported or unregistered deaths are likely to be substantially biased (towards mortality patterns 
in the better-off/urban sectors of the population, who are more likely to register deaths), and hence are of reduced value  
for policy.

Box 2: Crude death rate

The crude death rate (CDR) is a measure of the number of deaths in a population relative to the size of that 
population during a given period, usually 1 year. It is expressed in units of deaths per 1000 individuals per year. Thus, 
a CDR of 9 per 1000 means that, in a population of 1 million, one would expect to see 9000 deaths recorded per 
year – if all deaths get registered. Both the numerator (9000 in this case) and denominator (1 million) should refer to 
the same population in terms of geography and time. Also, it is standard practice to use the midyear population size 
as the best estimate for the average population exposed to the risk of dying over the course of the year.

The CDR is called a ‘crude’ rate because it does not take into consideration the age structure of the population. In 
practice, the risk of death varies according to age and sex as well as socioeconomic status, environment and other 
factors. For example, populations with a high proportion of young children or a high proportion of elderly people 
will, other things being equal, have relatively higher CDRs. This is because mortality risks are highest at youngest 
and oldest ages. Similarly, mortality rates are generally higher among males than females. Therefore, when 
comparing populations across countries, geographic areas or over time, it is important to use age- and sex-specific 
mortality rates alongside the CDR (see step 3).

2
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Understanding step 2

The CDR always needs to be interpreted in relation to the age–sex structure of the population, shown in substep 1.3. 
Populations with higher CDRs are likely to be those with high proportions of young children or elderly people, the 
two stages of life with the highest mortality risks. For example, the CDRs for the two pyramids shown in Figures 
4 and 5 are 13 per 1000 (top) and 6 per 1000 (bottom). This difference reflects the fact that countries with ageing 
populations have small cohorts with the lowest deaths rates and large cohorts with high death rates (ages 60+). 
The reverse is likely to be true in countries with younger populations.

Based on many decades of observing CDRs, demographers have concluded that there is generally a lower limit 
for the CDR of around 5 per 1000. For example, during the past 20–30 years, Japan, a country with high life 
expectancy, has consistently registered the lowest age-specific mortality rates in the world. Yet throughout this 
period, the CDR in Japan never fell below 5 per 1000. Thus, any CDR below 5 per 1000 should be viewed with 
caution, since it is likely to reflect an underregistration of deaths rather than a true reflection of low overall mortality 
rates. Key checks to perform include assessing the age structure of the population via the population pyramid (to 
understand whether there are significant proportions of elderly or young children in the population, which will then 
affect overall death rates), checking that the CDR is higher for males than females and comparing it with the IHME-
estimated CDR, and examining the time trend in the CDR.

There are exceptions. In countries where child mortality rates have fallen rapidly but too recently to result in a 
significant increase in the number of elderly, the population pyramid is heavily biased towards people in the young 
adult age range, and the high mortality age groups remain small. Examples are mostly found among the Gulf 
States, and some counties in Latin America, which all have low CDRs of around 3–4 per 1000.

The CDR should be calculated separately for males and females and should be slightly higher for males; if not, it is 
likely that male deaths are underreported.

To add additional perspective on the plausibility of the calculated CDR, ANACONDA offers a comparator in the 
form of the CDR calculated by IHME. If the difference between the calculated CDR and that estimated for the 
comparator is large (3 points or more), it is likely a reflection of underregistration of deaths by the civil registration 
system. From the IHME GBD database, ANACONDA calculates a CDR trend line going back to 1990 showing the 
evolution of mortality in the given country in the past 35 years. Mortality levels change slowly with only small 
fluctuations from year to year; hence, large fluctuations in the CDR calculated from the input data should be 
investigated to make sure that they can be explained – perhaps by some sudden catastrophe.

Since the CDR is calculated from the number of deaths occurring in the population at risk (usually the midyear 
resident population), it is not relevant for hospital data or other data for which the population at risk is not known.

Overall, the CDR calculated from the input data is a powerful and simple test of the likely extent of 
underregistration of deaths by the civil registration system. Any CDR of less than 5 per 1000 population needs to be 
critically assessed for plausibility, as it most likely is due to underregistration of deaths.
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Figure 4: Example of an ageing population pyramid (CDR of 7 per 1000 population)

Figure 5: Example of a young population pyramid (CDR of 5 per 1000 population)

Predicting the completeness of death reporting

The methods outlined in the previous step, where the reported CDR is compared with a comparator estimate of the CDR, 
require an external estimate of the actual number of deaths that occurred in the population to estimate the amount of 
undercounting. Although these estimates can be introduced via the comparator data series, there is an inherent advantage 
to being able to predict completeness of death registration directly from the input data. This is possible with a method we 
have developed to model the relationship between the observed CDR and that which would have been predicted given the 
rate at which the population is ageing and the level of child mortality (and its completeness) in the country (see Annex 1). 
This model allows users to directly predict their estimated completeness of death registration, given the observed CDR and 
the population age structure from their input data, the comparator level of child mortality, and the completeness of child 
mortality registration, entered into the tool in step 5 (Figure 6).
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Figure 6: Modelled relationship between completeness and CDR (calculated from input data)

Figure 6 shows how the modelled relationship can be used to predict death registration completeness for a hypothetical 
country. In looking at the purple line (with 11% of the population aged 65+), and assuming the registered CDR was 4 per 
1000, and a 5q0 of 40, the predicted level of completeness is around 45%. This precision should be sufficient to inform those 
responsible for improving vital registration systems about the need for action. The quantity 5q0 is defined as the risk of death 
per 1000 live births for children younger than 5. Overall, we can see the potential range in our estimate of death registration 
completeness given a registered CDR level and value of 5q0, and how it depends on the actual proportion of the population 
aged 65+.

This prediction model has the advantage that it is simple to use, inherent to the input data and likely to yield levels of 
completeness that are close to reality. These characteristics make it particularly useful for generating subnational 
estimates of completeness. In this case, additional information on prevailing levels of 5q0 for different regions of the 
country (obtained, for example, from a previous census or survey) should be used (using the user input function in 
ANACONDA) for best results. The Inter-agency Group for Child Mortality Estimation (IGME) 5q0 country estimates can be 
used as a fallback. Preserving the real variation in child mortality levels and registration completeness across a country will 
more accurately identify areas with lower death registration completeness and thus better serve efforts to improve national 
death registration completeness.

Step 3: Age-specific mortality rates
In this step, ANACONDA checks the age and sex structure of the population, and calculates 
mortality rates separately for each age group and for males and females. The set of age-
specific mortality rates (ASMRs) can be used to assess the quality of the mortality data by 
comparing the rates calculated from the input data with expected age patterns of mortality 

risk. By themselves, ASMRs are used to predict the expected number of deaths in a population and to check for excess or 
underreporting of mortality in specific age groups by comparing with ASMRs from other populations. They are therefore 
very relevant for the assessment of population health status. The specific relationship between age and mortality is shown 
in Box 3.

In contrast to the CDR, which is expressed as a rate per 1000, the ASMR is generally expressed per 100,000 because there are 
fewer deaths per category when allowing for age group. In countries or areas with smaller populations, the annual number of 
deaths at specific ages may be very small and would cause the ASMR to fluctuate unpredictably. To overcome that problem, it 
is advisable to calculate the ASMR over a 3- to 5-year period to average out any artificial instability due to small numbers.

3

CDR = crude death rate
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Box 3: Age-specific mortality rates and the natural logarithm

Generally, in all settings, mortality rates are high during infancy and early childhood, and fall to their lowest 
levels between the ages of 5 and 14. Subsequently, mortality rates start to rise with increasing age and increase 
exponentially beyond age 35 or so. Therefore, the natural logarithm (log) of the age-specific mortality rate (ASMR) 
should be a straight line as age increases.

ANACONDA calculates ASMRs for each 5-year age group from the input data and illustrates them on a logarithmic 
graph. This allows any deviation from the expected straight line to easily be seen (Figure 7). Any significant 
deviations from this ‘linear-in-logs’ pattern are likely to reflect the underreporting of deaths at some ages compared 
with others, which would need to be investigated.

Figure 7: Example logarithmic graphs of ASMRs for males and females

Male mortality is usually 
higher than female at all ages

Above age 35 you can generally expect 
to see a straight line for both sexes
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Understanding substep 3.1

Plotting the ASMR as shown in Figure 7 provides a simple check on whether there are any age groups where 
deaths are being selectively underreported. In settings where all deaths are registered, one expects to see a 
roughly straight line for ages 35 and older for both sexes. Because of the consistently higher male mortality, the 
line representing males should be higher throughout except for the very oldest age groups, where female rates 
sometimes are higher.

In countries with high maternal mortality in women of reproductive age and injury mortality in young adults 
(especially men), death rates will rise steeply around age 15 and peak before 30, after which the line will 
straighten out. Any departure from this linear pattern in adult death rates is likely due to deaths being selectively 
underreported or significant misreporting of the correct age at death.

It should be noted that, in some populations severely affected by mortality from HIV/AIDS, the ‘bump’ in the age 
pattern of the log of the death rates can be quite pronounced and extend well beyond age 35 or so. Thus, when 
interpreting the pattern of the log of the ASMRs, it is important to know whether it is a population with high HIV/
AIDs mortality, as this is likely to distort the usual pattern, typically for ages 25–55.

Although not explicitly tested for in ANACONDA, where the input data are grouped into 5-year age intervals, the 
quality of mortality data can be severely affected by what is known as ‘age heaping’, typically around ages ending 
in 0 or 5. In other words, families will often round up to an age ending in 0 or 5 when reporting a death to CRVS 
authorities. For example, rather than saying the child was 8, a parent may report they were 10. This is particularly 
the case for late registrations, and reporting deaths in censuses and surveys where the death took place at an 
earlier date. This can lead to significant distortions in the reported age pattern of deaths, and hence greatly reduce 
the utility of the data for understanding at what ages premature deaths are particularly high.

To assess the extent of age heaping, the distribution of deaths from the input data should be plotted according to 
single years of age at death, where these data are available.

An example of age heaping in the reported death data is shown in Figure 8.

Figure 8: Example of age heaping in civil registration data

Note: Red bars show deaths for each age that ends in 0 or 5.
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In addition to checking the age pattern of reported deaths, ANACONDA also assesses whether the age pattern of the 
comparative mortality of males and females is plausible. To better understand the age pattern of male–female differences in 
mortality reported in the input data, ANACONDA calculates the ratio of male to female mortality rates for each age group in 
substep 3.2. A simple and effective way of showing excess male mortality in any group is to show the ratios in a chart such 
as Figure 9.

Figure 9: Example of the ratio of male to female mortality rates, by age

Understanding substep 3.2

If death rates were the same for both sexes, the ratio between the male and female death rate (ie, the male rate 
divided by the female rate) would be 1 for all ages. As shown in Figure 9, this is not the case. Male death rates tend 
to be higher than female death rates at all ages except in populations where discrimination in favour of males, and 
the low status of women and girls in society negatively affect their chances of survival. Typically, this excess male 
mortality (as measured by the ratio of death rates) will peak somewhere in the age groups 15–34 as a result of 
much higher male than female mortality associated with accidents, suicides and violence. In countries with high 
prevalence of HIV infection and and/or high maternal mortality, female mortality may exceed male mortality in 
some of the reproductive age groups.

A secondary, much lower peak in the ratio is often seen around 55–64 years because more males than females 
tend to die from chronic diseases at those ages. This is particularly pronounced in societies where males have 
a much higher consumption of tobacco and alcohol than females. At older ages, the sex ratio of mortality 
approaches 1, but the risk of death generally continues to be higher for older men than older women.

Deviations from this typical age pattern of excess male mortality are possible, depending on the country context, 
but should be investigated for plausibility. In particular, a higher than expected male to female mortality ratio at any 
age is likely indicative of differential underreporting of female deaths.
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Step 4: Age distribution of deaths
In step 4, ANACONDA examines the age distribution of registered deaths. The age distribution 
is the percentage of total deaths that occur at each age. The distribution would be expected 
to vary considerably depending on the overall level of mortality, which determines the risk of 
dying at each age, but also depending on the size of the population currently alive at each age. 
The age distribution of deaths is here shown in a histogram showing both sexes (Figure 10).

By displaying the input data in this format, users can readily spot whether there are abnormal or abrupt changes in the way 
that deaths are increasing with age in the input data for each sex. Presenting them together also makes it possible to show 
the overall shape of the sex-specific death distributions and clearly shows that higher proportions of male deaths happen at 
younger ages than is the case for women. Indeed, almost a quarter of all female deaths are over 85 years, which is twice the 
proportion for men of similar age. 

Figure 10: Example age distribution of deaths for males and females

4

Understanding step 4

Irrespective of the level of mortality, the heights of the bars gradually increase for each sex from the age of 5 
years onwards. The higher mortality rates of males are reflected in the generally greater heights of their bars in the 
younger adult age groups. Hence, fewer males remain to die at the older ages. For females, the pattern is much 
more skewed towards the older ages, particularly the last age group (85+). This type of information is clearly of 
relevance to those planning or catering for the elderly population.



C
R

V
S

 technical guide

17Guidance for assessing and interpreting the quality of mortality data using ANACONDA | Version 1017-01

Step 5: Child mortality rates
In this step, the rich and vast collection of survey- and census-derived estimates of child 
mortality is used to assess the plausibility of the level of child mortality calculated from the 
input data. The significance of this indicator is explained in Box 4. The estimates of child 
mortality risk calculated from censuses and surveys are likely to be more accurate than levels 
calculated from civil registration data since the former require ‘active’ questioning of families 

about deaths of children ever born, while civil registration is a more ‘passive’ mechanism for reporting deaths that often 
requires families to take the initiative to register child deaths.

Box 4: Child mortality measurements

More than any other age group, the mortality among children under 5 years old reflects a country’s economic, 
social and health conditions – hence the frequent use of child mortality as a development indicator and for health 
monitoring in general. This, together with the massive focus of the global health and development community over 
the past 5 decades on improving child survival, has led to a large amount of data in almost all developing countries, 
collected through censuses and surveys, on mortality levels among children under 5. In parallel, demographic 
research has led to a series of ‘indirect’ methods to measure the risk of child death (ie the probability of dying 
between birth and age 5). These methods, when applied to survey and census data, yield reliable estimates of child 
mortality risk.

The fact that we have relatively reliable methods to estimate true child mortality makes it useful to estimate the 
extent to which registration undercounts mortality of children. For instance, in country X, child mortality according 
to the registered deaths is 9.5 per 1000 live births. However, estimates from the Inter-agency Group for Child 
Mortality Estimation put it at 17.5. As a result, we can confidently say that, in country X, the registration system 
only registers 54% of all child deaths, or undercounts child deaths by 46%.

In step 5.1, ANACONDA calculates the 5q0 from the input data using life table techniques. This risk, calculated from the 
civil registration data, can then be directly compared with the risk of child death calculated from censuses and surveys, or, 
as is more commonly done, with some trend line fitted to the series of estimates derived from different sources (Figure 11). 
The reliability of the under-5 rate is dependent on both the accuracy and completeness of death and birth reporting as the 
denominator is ‘number of live births’.

Figure 11: Comparison of input data and estimated under-5 mortality rates

5

Country data (actual)

Comparator data (estimated) 

U5MR = under-5 mortality rate
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Understanding substep 5.1

If there are indications from the CDR (step 2) that deaths are underreported, it is most likely to occur for young 
children, especially if deaths happen very soon after birth (during the neonatal period from birth to 28 completed 
days after birth). Indeed, it is not uncommon that many deaths during the early neonatal period are misclassified as 
stillbirths and therefore neither the birth nor the death of the child is recorded. This is very poor practice, as data on 
both events are critical to inform strategies to improve maternal and child health services.

To check whether child deaths are being underreported in the input data, ANACONDA compares the under-5 mortality 
rate (also referred to as 5q0) calculated from the input data with the corresponding level, estimated by the IGME, based 
on fitting a line to the universe of (plausible) child mortality estimates derived from censuses and surveys.

In Figure 11, which displays data from two different sources, the extent of underreporting of child deaths by the 
civil registration is measured by the relative difference between the calculated risk from the input data and the 
comparator data (blue line), rather than the absolute difference from the estimated trend line.

In the above case, the relative difference is calculated as (22.5 − 13.1) ÷ 22.5 × 100, which equals 42%, suggesting 
that 4 out of 10 children who die are not being registered.

ANACONDA has to construct a life table to be able to calculate the risk of dying for children, as opposed to simply dividing 
under-5 deaths by live births (since the comparable metric from the IGME is the risk of child death). Therefore, the life table 
calculated from the input data on deaths and population alive at different ages has been included in substep 5.2. The life 
table provides other measures of direct public health importance, such as the probability of dying at any age for a particular 
year (Box 5). However, if serious underreporting of deaths (and births) is suspected, the life table will also be biased and will 
substantially overestimate indicators such as life expectancy at various ages, and hence should be used and interpreted with 
great caution.

BOX 5: The life table

A life table shows, for each age, what the probability is that a person will die before his or her next birthday 
(probability of death). We do this by assuming that the mortality rates observed in a given year (ie the period) at a 
given age (x) will stay the same throughout a person’s lifetime. ANACONDA calculates, based on the input mortality 
and population data, a period life table for that given year. The life table applies these period mortality rates, at each 
age, to an artificial or imaginary population of 100,000 births, and follows them throughout their (imaginary) life by 
applying the fixed or period death rates to this cohort of 100,000 births until they all die out. In reality, it may take 
100 or more years for a given birth cohort to die out, but we can model their progress through life instantaneously by 
applying the period mortality rates in a given year and assuming they apply throughout the life of the cohort.

Example of an abridged life table
Age Years in 

interval
Deaths Probability of 

dying
Probability of 

surviving
Individuals 
surviving

Deaths in 
interval x

Years Lived in 
interval x

Cumulative 
years lived

Expectancy of 
life at age x

x n nDx nQx nPx lx ndx nLx Tx ex

0 1 4608 0.012609036 0.987390964 100000 1260.903615 98865.18675 7514971.215 75.14971215

1-4 4 876 0.002198523 0.997801477 98739.09639 217.0801595 394435.3932 7416106.028 75.10810104

5-9 5 515 0.001246196 0.998753804 98522.01623 122.7777798 492303.1367 7021670.635 71.27006637

10-14 5 690 0.001655689 0.998344311 98399.23845 162.9185102 491588.896 6529367.498 66.35587431

15-19 5 3412 0.007969989 0.992030011 98236.31994 782.9423639 489224.2438 6037778.602 61.4617751

20-24 5 4989 0.011686728 0.988313272 97453.37757 1138.911138 484419.61 5548554.359 56.93547517

25-29 5 4786 0.011707637 0.988292363 96314.46643 1127.614799 478753.2952 5064134.749 52.57917046

30-34 5 4230 0.011312732 0.988687268 95186.85164 1076.823295 473242.1999 4585381.453 48.17242481

35-39 5 3558 0.010975418 0.989024582 94110.02834 1032.89689 467967.8995 4112139.253 43.69501663

40-44 5 3739 0.011912594 0.988087406 93077.13145 1108.790101 462613.682 3644171.354 39.15216657

45-49 5 4189 0.01420508 0.98579492 91968.34135 1306.417658 456575.6626 3181557.672 34.59405297

50-54 5 5057 0.020663715 0.979336285 90661.92369 1873.412161 448626.0881 2724982.009 30.05652096

55-59 5 6498 0.032645228 0.967354772 88788.51153 2898.521208 436696.2546 2276355.921 25.63795566

60-64 5 7405 0.048748375 0.951251625 85889.99032 4186.997438 418982.458 1839659.667 21.41879001

65-69 5 8301 0.079397038 0.920602962 81702.99288 6486.975614 392297.5254 1420677.209 17.38831294

70-74 5 10525 0.146053773 0.853946227 75216.01727 10985.58309 348616.1286 1028379.683 13.6723496

75-79 5 11658 0.231176506 0.768823494 64230.43418 14848.56732 284030.7526 679763.5547 10.58320037

80-84 5 12139 0.369308934 0.630691066 49381.86685 18237.1646 201316.4228 395732.8021 8.013727049

85+ 5 15539 1 0 31144.70225 31144.70225 194416.3793 194416.3793 6.242357938
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In the example, the mortality rates from the input data are first converted into probabilities of dying at each age x, 
conventionally designated as qx, for each year of age x. These probabilities are shown in the third column, whereas 
the fourth column shows the probability of surviving for the cohort. The fifth column, lx, shows the number of 
survivors or the (imaginary) life table population who reach a given year of age. For example, of the 100,000 of the 
life table population who had just been born (ie were exact age 0), 825 could be expected to die before reaching 
their first birthday, based on the period mortality rates observed in the population from which the input data came. 
Similarly, of the 99,175 who reached their first birthday (age 1), 62 would be expected to die between their first and fifth 
birthdays. This procedure is continued to the end of the life table - in this case, 85+ when all 100,000 will have died. 
From this, we compute the number of deaths (column dx) at each age among the imaginary cohort of 100,000 births 
that we started off with. 

The Lx column denotes the total number of years of life lived by survivors at age x before they reach age x + 1. 
If no-one died between age x and x + 1, Lx would simply be equal to lx. But since some will die (dx) at age x, we 
assume they die, on average, midway between ages x and x + 1. In other words, we assume that each of the 
people dying after reaching their xth birthday lived only one-half year after their xth birthday. Accordingly, among the 
number of survivors, lx, who attain age x, the years of life lived by those dying during that year of age is ½dx. The 
years of life lived by the survivors is lx + 1, which is equal to lx – dx. The sum of ½ dx and lx – dx is the total number of 
years lived within that year of age. 

The column headed Tx is the total number of years of life lived by the life table cohort beyond age x until the end of 
the life table, when all of the original 100,000 births will have died, again assuming that each of the persons dying 
lived one-half year after the last birthday.

Finally, to compute the expectation of life (ex), at birth or at any age, just divide the total number of years lived by the 
cohort (Tx) by the number of those who survived to that exact age (lx) or:

 n ex = average years of life remaining for a person at age x = Tx / lx.

Life expectancy at birth, e0, is the most commonly used life table measure, since it summarises period mortality 
rates over the entire lifetime of a population. Other commonly used measures extracted from a lifetable include:

 n    5q0 – the probability that a newborn at exact age 0 will die before his or her 5th birthday

45q15 – the probability than an adult who reaches his or her 15th birthday will die before he (or she) reaches age 60, 
45 years later.

Always remember that a life table, such as the one above, assumes that the mortality rates observed in a country 
or subpopulation during the specified period will continue unchanged over time. In that sense, the life table is a 
summary of the implications of current mortality rates if these were applied to an imaginary birth cohort of 100,000 
(called the ‘radix’ of the life table). Life expectancy is an easy-to-understand indicator of mortality levels in a 
particular population at a particular time, and it is frequently used to compare the overall mortality levels of various 
populations.

(3) Cause of death analysis

Step 6: Classification of deaths into broad cause groups

In addition to the mortality analysis explained above in the first five steps, ANACONDA 
provides a detailed framework for assessing the plausibility and quality of COD data (Box 6). 
This analysis is important because public health interventions target specific diseases or 
injuries, as do health policies and some health services, and thus require accurate and timely 
data on mortality due to those diseases. For example, the public health strategies to control 

lung cancer are very different from those developed to control cervical cancer. Hence the need for accurate and timely 
cause-specific mortality data.

6
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Box 6: Standard grouping of diseases into three major groups

As a first step, it is important to check the data to ensure that broad categories of causes of death (COD) are reliably 
being reported. For example, is the fraction of deaths due to injuries reported in the input data about what one would 
expect, irrespective of the specific causes of those injury deaths (eg suicide, homicide, accident). Once this has been 
assessed in step 6, subsequent steps will interrogate the data in more cause-specific detail.

The thousands of possible CODs contained in ICD 10 were classified into three very broad groups that are useful for 
health policy debate (Murray and Lopez 1996):

1. Group I. Infectious and parasitic diseases (eg tuberculosis, pneumonia, diarrhoea, malaria, measles); maternal and 
neonatal causes (eg, maternal haemorrhage, birth trauma); malnutrition.

2. Group II. Noncommunicable diseases (eg cancer, diabetes, heart disease, stroke); mental health conditions 
(eg schizophrenia).

3. Group III. Injuries (eg accidents, homicide, suicide).

The expected percentage distribution of CODs across these three groups varies in different countries according 
to where the country stands in relation to the ‘health epidemiological transition – an interrelated set of changes in 
demographic structures, patterns of disease and risk factors. Population ageing can be observed in all populations, and 
results from falling fertility rates and declines in mortality rates, initially among children under 5 years old,  
and then among middle and older age adults. This results in epidemiological changes, including a shift in the main 
COD structure away from infectious diseases, such as gastrointestinal diseases and pneumonia (diseases traditionally 
associated with poorer countries), towards noncommunicable diseases such as cardiovascular disease, stroke and 
cancers, which mainly affect older adults. As countries develop, risk factors for infectious diseases  
(eg undernutrition, unsafe water and poor sanitation) are brought under control, while risk factors for chronic diseases 
(such as being overweight, using alcohol and tobacco) increase. But, in practice, the transition does not always happen 
quite so cleanly, with many countries or parts of countries facing a dual burden of disease associated with both group I 
and group II conditions (eg South Africa).

A simple but effective way of checking the plausibility of mortality data is to compare the observed patterns of CODs with 
what would be expected given the probable levels of life expectancy. Generally, countries with low life expectancy are 
characterised by high levels of mortality due to infectious and parasitic diseases, especially in childhood, along with high 
maternal mortality (group I causes). As life expectancy rises, the pattern of mortality changes, with more deaths occurring 
in older age groups due to noncommunicable conditions such as cardiovascular diseases and cancers (group II causes). The 
proportion of deaths due to injuries typically remains fairly constant as life expectancy increases (Table 1).

The model-based percentages in Table 1 show how the percentage of deaths assigned to various causes in each of the 
groups is expected to change as life expectancy increases. Thus, a country with an average life expectancy of 55 years would 
typically have about 22% of deaths due to group I causes and 65% due to group II causes. A country with a life expectancy 
of 65 years would typically have a smaller percentage of deaths due to group I conditions (around 13%) and correspondingly 
more deaths due to group II conditions (74%). As these are model-based percentages derived from the WHO database, it 
is unlikely that any country would fit exactly these proportions, but significant departures from these broad patterns would 
suggest potential problems with the certification or coding of CODs.

In step 6, ANACONDA distributes all the usable ICD-coded deaths in the input dataset into the three major groups outlined in 
Box 6 and taken from the 1990 GBD study. It also shows the fraction of deaths assigned to what are termed ‘unusable’ COD 
codes. This is illustrated in Figure 12.

Table 1: Expected distribution of COD according to life expectancy, by broad groups

Group Life expectancy (years)

55 60 65 70

I 22% 16% 13% 11%

II 65% 70% 74% 78%

III 13% 14% 13% 11%

Source:  AbouZahr et al (2010)
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Figure 12: Distribution of deaths by three major disease groups

Understanding step 6

Nosologists4 have identified a number of causes in ICD 10 that cannot or should not be used as the underlying cause 
of death (UCOD) (eg ‘heart failure’), or that contain no information about the probable UCOD (eg ‘ill-defined causes’). 
Further, the International Classification of Diseases contains a number of codes that, while broadly useful for public 
health purposes (such as ‘ill-defined sites of cancer’), are not specific enough to guide public policy dialogue. These 
are also included among the unusable codes in certain cases.

A common problem in many countries is the large number of deaths that are not properly certified and hence end 
up with some unusable code. Showing the three broad disease groups together with this category of vague and 
poorly defined deaths is an effective way to summarise the extent of the challenges facing doctors, and coders and 
those responsible for health information systems in the country. If the proportion of unusable codes is large (more 
than 10%), it will bias the distribution of deaths shown in the three major groups (since it is unlikely that unusable 
codes are equally or proportionally distributed across the three broad categories) and the data will not represent the 
true health status of the population.

The bias introduced into the COD distribution and be more serious if the type of unusable cause given is one where 
even the broad category of the underlying cause cannot be correctly determined. For example, when septicaemia 
is written on a death certificate, the death may be the result of communicable disease, noncommunicable diseases, 
or accident and injury. This is because septicaemia is the immediate COD, but was caused by some other condition 
such as an accident, cancer or an infectious disease (Figure 12).

4 Nosology is a branch of medicine that deals with the classification of diseases.

GBD = global burden of disease



C
R

V
S

 te
ch

ni
ca

l g
ui

de

22 Guidance for assessing and interpreting the quality of mortality data using ANACONDA | Version 1017-01

As countries develop, and communicable diseases, malnutrition, and maternal and neonatal conditions are brought under 
control, more and more deaths will occur from noncommunicable diseases among the growing number of adults and the 
elderly. A simple way to check if this epidemiological transition is being reliably reflected in the mortality input data is to 
calculate the ratio of deaths in group II to group I. This ratio is a powerful descriptor of how fast disease patterns are changing 
in the country. The higher the ratio, the further the country has moved through this evolution. ANACONDA computes this 
ratio in step 6 and compares it with the group II/group I ratio calculated from the comparator (GBD region in which the 
country is situated – see Figure 1). If the two ratios differ substantially, the input data should be carefully reviewed in case one 
or other of the two broad disease categories (group I or group II) is being differentially underdiagnosed.

To further illustrate the evidence base provided by the input dataset, all the unusable and insufficiently specified codes found 
in the dataset are extracted and shown in a pie chart (Figure 13). The figure shows that any policy based on the dataset below 
will have made use of only 55% of the available data. With such a high fraction of unusable codes, the whole dataset is of no 
use to policy and can seriously mislead users about the real health problems of the population.

Figure 13: Distribution of deaths by usability

Step 7: Quality of cause of death data
The most common reason for poor quality COD data is that doctors do not know how to 
fill out the death certificate correctly, particularly the section allowing the selection of the 
underlying UCOD. The various errors introduced by doctors when certifying the COD have 
led to what are collectively known as ‘ill-defined’, ‘garbage’ or ‘unusable’ codes, as discussed 

above. Step 7 investigates, in detail, the contents of the unusable codes and other quality aspects of the COD input data. 
The step is broken down into eight substeps.

Step 7.1 introduces the International Form of Medical Certificate of Cause of Death (World Health Organization 2016), the 
use of which is recommended for improving the quality of COD data.5 

Although ANACONDA does not specifically analyse the form used to collect the input data, users are encouraged to check 
how closely the form used in their dataset resembles the international standard. The design of the international form 
encourages the certifying physician to report the sequence of events leading to death, and hence facilitates the selection 
of the UCOD by correct application of the ICD 10 coding rules by trained coders. For public health, it is the UCOD that is 
important, rather than the immediate cause that led to death (such as septicaemia), as this is the disease or condition that 
initiated the train of morbid events that led to death, and which public health efforts should seek to prevent. All tabulations 
of COD statistics should be based on the UCOD and not on the immediate cause.

In substep 7.2, ANACONDA compiles all deaths in the input data according to the 22 chapters of the ICD, and shows the 
number of unusable codes within each chapter (Table 2). By indicating the fraction of deaths belonging to each chapter 
and the fraction of unusable codes attributed to each chapter, it is possible to immediately see where the unusable causes 
are coming from and which are the major areas of concern for incorrect COD certification. Are there disease chapters that 
contribute more than would be expected from their share of deaths? For example, if an ICD chapter accounts for only 2% of 
deaths but contributes 10% of all unusable codes, then certification practices for diseases contained in this chapter require 
special attention. This type of analysis makes it possible to better target intervention efforts and gain important insights into 
likely biases in the COD patterns suggested by the data.

7

Unknown: 0.0%

Unusable causes: 28.0%

Usable causes: 54.3%

Insufficiently specified causes with 
limited implications: 17.7%
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Table 2: Example ANACONDA output: total deaths by ICD chapter, with percentage unusable 
and insufficiently specified codes in each

ICD 
chapter

Description ICD code 
range

Total 
deaths

% of total 
deaths

Total 
unusable 
causes

Total 
unusable 
level 1/2/3

Total 
unusable 
level 4

% of total 
unusable 
causes

1 Chapter I: Certain infectious and parasitic 
diseases

A00-B99 39,405 7.3 7,490 7,383 107 3.7

2 Chapter II: Neoplasms C00-D48 57,823 10.8 6,292 6,292 0 3.1

3 Chapter III: Diseases of the blood and 
blood-forming organs and certain disorders 
involving the immune mechanism

D50-D89 4,090 0.8 2,770 2,770 0 1.4

4 Chapter IV: Endocrine, nutritional and 
metabolic diseases

E00-E90 39,361 7.3 4,013 4,013 0 2.0

5 Chapter V: Mental and behavioural disorders F00-F99 791 0.1 357 357 0 0.2

6 Chapter VI: Diseases of the nervous system G00-G99 7,525 1.4 3,599 2,655 944 1.8

7 Chapter VII: Diseases of the eye and adnexa H00-H59 10 0.0 10 10 0 0.0

8 Chapter VIII: Diseases of the ear and  
mastoid process

H60-H95 35 0.0 31 31 0 0.0

9 Chapter IX: Diseases of the circulatory system I00-I99 187,759 35.0 73,959 42,424 31,535 36.7

10 Chapter X: Diseases of the respiratory system J00-J99 82,607 15.4 58,089 5,757 52,332 28.9

11 Chapter XI: Diseases of the digestive system K00-K93 21,187 3.9 3,503 3,503 0 1.7

12 Chapter XII: Diseases of the skin and 
subcutaneous tissue

L00-L99 2,193 0.4 68 68 0 0.0

13 Chapter XIII: Diseases of the musculoskeletal 
system and connective tissue

M00-M99 1,820 0.3 967 967 0 0.5

14 Chapter XIV: Diseases of the genitourinary 
system

N00-N99 20,539 3.8 5,141 5,141 0 2.6

15 Chapter XV: Pregnancy, childbirth and the 
puerperium

O00-O99 1,570 0.3 3 3 0 0.0

16 Chapter XVI: Certain conditions originating in 
the perinatal period

P00-P96 9,867 1.8 712 0 712 0.4

17 Chapter XVII: Congenital malformations, 
deformations and chromosomal abnormalities

Q00-Q99 4,297 0.8 0 0 0 0.0

18 Chapter XVIII: Symptoms, signs and abnormal 
clinical and laboratory findings, not elsewhere 
classified

R00-R99 20,673 3.8 20,254 20,254 0 10.1

19 Chapter XIX: Injury, poisoning and certain 
other consequences of external causes

S00-T98 0 0.0 0 0 0 0.0

20 Chapter XX: External causes of morbidity and 
mortality

V01-Y98 35,447 6.6 14,017 5,702 8,315 7.0

21 Chapter XXI: Factors influencing health status 
and contact with health services

Z00-Z99 0 0.0 0 0 0 0.0

22 Chapter XXII: Codes for special purposes U00-U85 0 0.0 0 0 0 0.0

Total 536,999 100.0 201,275 107,330 93,945 100.0

Understanding substep 7.2

Unusable codes can be found in most chapters, and knowing the proportion in each chapter is a useful first 
step towards identifying poor certification/coding practices associated with certain diseases, particularly if the 
proportion of unusable codes is far greater than expected. Chapter 18 of the ICD (‘Symptoms, signs and abnormal 
clinical and laboratory findings, not elsewhere classified’) contains the vast majority of ill-defined conditions for 
which no specific diagnosis can be made.

One would expect chapter 18 to account for a high proportion of ill-defined and unusable codes. However, in 
general, the highest proportions are found in chapter 9 (‘Circulatory system’), chapter 10 (‘Respiratory system’) 
and chapter 2 (‘Neoplasms’), suggesting that certification and coding improvement strategies should focus on the 
major diseases contained in these chapters.
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For many countries, particularly those that have been successful in registering most deaths, the major challenge to 
improving the utility of CRVS data lies in improving the accuracy of COD data. This in turn poses two challenges – ensuring 
that the UCODs that are not considered as unusable are diagnosed correctly and reducing the fraction of unusable codes 
in the data. A recent meta-analysis of studies to evaluate diagnostic accuracy of the UCODs occurring in hospitals found 
systematic errors, resulting in an incorrect diagnosis in 25–65% of cases (Rampatige et al 2014). This type of diagnostic 
evaluation, although important, requires special research studies on a sample of deaths in a sample of hospitals (Rampatige 
et al 2014), and is outside the scope of ANACONDA. 

Classifying ‘unusable’ cause of death codes according to type

In substep 7.3, ANACONDA breaks up the unusable causes and classifies these into five different categories, according to 
their type, as follows: 

1. Category 1: Symptoms, signs and ill-defined conditions mostly drawn from R00–R99 in ICD 10

2. Category 2: Impossible as UCODs. Includes causes such as ‘essential hypertension’ and ‘atherosclerosis’

3. Category 3: Intermediate CODs. Causes that have been precipitated by the underlying cause

4. Category 4: Immediate CODs, such as heart or respiratory failure

5. Category 5: Insufficiently specified causes within ICD chapters within a larger disease category. These include causes 
such as ‘ill-defined site of cancer’ and ‘ill-defined injuries’. Use of these codes is unhelpful in guiding prevention efforts. 
Such efforts are usually cause specific (eg lung cancer, early diagnosis of breast and prostate cancer).

The classification provides detailed insight into the type and frequency of unusable codes in the country input data. It is 
helpful to determine the most effective intervention necessary for correcting the data and for monitoring the impact of 
the interventions over time. Countries are therefore urged to carefully review the patterns of unusable codes in their data 
and design certification improvement strategies that are aligned with the error patterns in their unusable codes.6 The first 
category in the classification corresponds to chapter 18 of the ICD and amalgamates symptoms, signs and ill-defined 
conditions that should never be assigned as the UCOD, or at least limited to the few times when it really is not possible to 
assign a more specific COD, such as sudden deaths that could not be autopsied (R96–99).

The next three categories group together conditions that cannot, or should not, be used as UCODs, because they are 
nosologically impossible, or because they represent the intermediate or final condition before death. 

The fifth category has also been included among the unusable codes because more specific diagnoses could have been 
made. This category includes causes such as B99 ‘Other and unspecified infectious diseases’, C80 ‘Malignant neoplasms 
without specific site’, F50 ‘Eating disorders’ and I99 ‘Other unspecified disorders of circulatory system’. They may help 
define the amount of mortality within a broad group (eg, cancer or injuries), but their lack of specificity restricts their value 
for planning and evaluating public health programs.

In the dataset described in Table 3, 1 in 3 deaths was given an unusable COD of some sort, with most of them being 
intermediary causes and insufficiently specified causes.

Table 3: Classification of unusable causes by type

Unusable codes classification No. of deaths 
with unusable 
codes

% of total causes % of total 
unusable and 
insufficiently 
specified causes

Category 1: ‘Symptoms, signs and ill-defined conditions’ 18,004 3.4 8.9

Category 2: ‘Impossible as underlying causes of death’ 4,969 0.9 2.5

Category 3: ‘Intermediate causes of death’ 47,188 8.8 23.4

Category 4: ‘Immediate causes of death’ 11,496 2.1 5.7

Category 5: ‘Insufficiently specified causes within 
ICD chapters’

119,618 22.3 59.4

Total unusable and insufficiently specified causes 201,275 37.5 100.0
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Classifying ‘unusable’ cause of death codes according to policy implications

In substep 7.4, an alternative approach to classifying the same universe of unusable and insufficiently specified codes is 
proposed. It regroups unusable causes according to their potential impact for guiding or misguiding public policy to prevent 
premature deaths. In this classification, proposed by an international expert group,7 four levels of ICD codes that should be 
avoided are defined, depending on how serious their impact is for misguiding public policy. 

 n Level 1 – Codes with serious implications likely to have a very high impact for health policy. These are causes for 
which the true UCOD could belong to more than one broad GBD group, such that it cannot even be determined whether 
the true cause was a communicable disease, a noncommunicable disease or the result of an injury. These are clearly the 
most serious of the unusable codes, since they could potentially alter our understanding of the broad pattern of CODs in 
the population.

 n Level 2 – Codes with substantial implications likely to have a high impact. These are causes for which the true 
COD is likely to belong to only one of the three broad GBD groups. In other words, the broad COD group to which the 
unusable cause belongs can be determined. These unusable causes are less serious than level 1, since they do not alter 
our understanding of the broad composition of CODs in the population. They do, however, affect our knowledge of 
leading CODs.

 n Level 3 – Codes with important implications likely to have medium impact. These are causes for which the true 
UCOD is known to be within the same ICD chapter. For instance, a death assigned to ‘ill-defined site of cancer’ indicates 
that the true COD was cancer, but does not specify the site. Knowledge about the site of cancer is important for public 
health policy, since different strategies are applied for different types (sites) of cancer.

 n Level 4 – Codes with limited implications likely to have low impact. These are diagnoses for which the true COD 
is likely to be confined to a single disease or injury category. For example, ‘unspecified stroke’ would still be assigned as 
a stroke death, and not to some other disease category. The implications for public policy of unusable causes classified 
at level 4 will therefore generally be minor.  Hence, it is suggested that countries focus energies on eliminating the three 
other levels. The fourth level is included for those countries that have fairly accurate COD data, but could do better 
because of the availability of diagnostic tests.

Including the classification of unusable codes in ANACONDA allows countries to see the comparative importance of the 
four levels of unusable codes. It would then be up to the country to decide the level it would be interested in investigating 
further. For most countries, the important levels to work on would be levels 1, 2 and 3, which would contain the most 
important unusable codes – those likely to have substantial implications for correctly understanding disease and injury 
patterns in the population. Level 4 is likely to contain those codes that, although not as specific as is allowed for in the ICD, 
would demand considerable diagnostic sophistication and equipment to correct, and hence might not be possible to resolve 
in all countries and circumstances. Besides, as stated above, their impact for policy would be minor.

Table 4: Distribution of unusable codes according to severity levels

7 Expert Group meeting on garbage codes, Melbourne School of Population and Global Health, 27–28 March 2017.

Unusable codes severity No. of deaths 
with unusable 
codes

% of total causes % of total 
unusable and 
insufficiently 
specified causes

Very high 66,226 12.3 32.9

High 19,845 3.7 9.9

Medium 21,259 4.0 10.6

Low 93,945 17.5 46.7

Total unusable and insufficiently specified causes 201,275 37.5 100.0
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In the dataset examined in Table 4, approximately 30% of all deaths have been assigned an uninformative cause. However, 
close to 45% of these have a very high impact on the COD distribution, as the true underlying cause could be in a different 
broad group of diseases or injuries, 22% are within the same broad group and 17% within the same ICD chapter. The 16% 
that are likely to be within the same specific disease group, such as ‘stroke unspecified’, can probably be ignored, as they 
would not distort the diseases pattern for public health purposes. This additional information has only minor importance for 
overall disease and injury control strategies in a country, which is not the case for levels 1, 2 or 3. In such cases, as in the 
example in Table 4, it would seem advisable when formulating a strategy to reduce unusable causes to focus on levels 1–3, 
with priority given to reducing the use of unusable codes classified as level 1.

To understand further whether unusable codes are more frequent in certain population groups, we examine the age and 
sex distribution of the four levels identified. As people age, they are more likely to suffer from diseases and conditions 
concurrently. This makes it difficult for doctors to identify a single underlying cause or even a specific cause. As a result, it is 
not surprising to see that unusable CODs increase with age, as shown in Figure 14. The fact that in most countries women 
survive to a higher age than men is likely to be the explanation for the taller bar for women in the 65+ age group.

Figure 14: Age and sex distribution of unusable causes

Understanding substep 7.5

Figure 14 clearly shows that CODs classified as unusable are much less common for children than for any other age 
group. Deaths that occur above age 65 years have the highest proportion of all four types of unusable codes. As 
people age, they are likely to suffer from a number of diseases and conditions concurrently. This makes it difficult 
to identify a single UCOD as required by the ICD rules. As a result, it is commonly observed that the proportion 
of unusable ICD mortality codes is higher in the oldest age groups, as shown in Figure 14. In addition, because 
many deaths in older people occur outside hospitals, the certifying doctor may not have access to the decedent’s 
medical records and may assign a vague, unspecific COD based on information provided by the family.

The purpose of the visualisations in substep 7.6 is to show the significant impact that unusable codes can have on distorting 
the likely true COD composition in the population, even when the data are compiled into major disease groups. This is 
done by showing the death distribution in a pie chart before and after the redistribution of unusable codes (Figure 15). The 
redistribution algorithm used in the second pie chart to assign unusable codes to their most likely broad cause group is 
identical to that used for the GBD study, and is based on clinical observations and opinion about probable misdiagnoses, 
statistical algorithms and proportional redistribution according to reported COD patterns (Lozano et al 2013).
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Figure 15: Example ANACONDA output: distribution of data according to three broad GBD groups, before and  
after redistribution

Before 
redistribution

After 
redistribution

Understanding substep 7.6

As clearly demonstrated in the two pie charts in Figure 15, when the unusable fraction of all deaths is high (dark grey 
segment in the first chart), the implications for understanding the most likely COD pattern in the population can be 
substantial. This is evident from the second pie chart, where the unusable CODs have been redistributed according 
to complex algorithms based on the GBD, with each disease group reallocated to the three broad categories. Most 
vague and ill-defined diagnoses of death are likely to be redistributed to group II (noncommunicable diseases), with 
lesser amounts going to communicable diseases and injuries. The proportionate impact of redistributing unusable 
codes, however, is often greater for group I than group II (compare the relative sizes of the two red slices versus the 
relative sizes of the two blue slices in the two pie charts in Figure 15) and sometimes the injury slice gains the most, 
relatively speaking.
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Countries with different age structures, socioeconomic development and medical practices will show different patterns 
of unusable codes. In substep 7.7, we return to the classification of unusable codes into severity levels, and ask: In each 
of the four levels identified in step 7.4, which were the most commonly misused CODs? To provide further insight into the 
distribution of causes at each level, ANACONDA offers the possibility of drilling down into the different levels of unusable 
codes to discover which disease groups they contain. In other words, users will be able to identify the specific set of 
diagnostic practices that are responsible for the vast majority of unusable codes within each level. 

Given the large number of unusable CODs classified into each of the four severity levels, it is difficult to get an overview of 
which ICD codes to focus on. To help users, all the unusable codes at each level were therefore grouped into ’packages’ 
of CODs that had similarities and were given labels. For example, all the different misdiagnosis pathways that are coded to 
septicaemia are grouped into a ‘sepsis’ package; all diagnostic pathways that are incorrectly coded to urinary and genital 
fistula are grouped into the ‘fistula’ package, and so on. In all, there are some 160 such unusable code packages for ICD 10 
coded causes across the four levels. Rather than dealing with a large number of individual unusable CODs, the packages 
can be ranked in order of importance within each of the four levels. As a result, it is possible to immediately see the leading 
packages of unusable CODs that cause the greatest problems within each severity level.

Within each of these packages, ANACONDA further offers the possibility of identifying the top 10 ICD 10 codes that are 
contributing the largest number of unusable codes to a specific package. It is this detailed information that is likely to be 
most useful in guiding COD improvement strategies. Countries should focus attention on the most important packages listed 
in levels 1–3 of the severity classification, and within these identify the key ICD codes that are being most misused. The 
packages and ICD 10 codes listed in level 4, although relevant for some countries, can be given lower emphasis in a national 
COD data improvement strategy.

In the second last substep (7.8), ANACONDA investigates whether there are any nonstandard ICD codes in the dataset. Some 
countries may, for very good reasons, create additional CODs. Because these cannot be classified to any ICD code, ANACONDA 
considers them as unknown causes and excludes them from the analysis. Finally, in substep 7.9, the application checks whether 
there are deaths that have been assigned a biologically implausible cause. Most of the biologically implausible causes arise 
from children being assigned adult causes such as lung or ovarian cancer, or males being assigned a maternal COD or coded as 
dying from strictly female cause such as ovarian cancer (and the converse). Neither of these two substeps is likely to constitute a 
significant proportion of the input data, but at least the implausible COD can be corrected once revealed.

Step 8: Age pattern of mortality for broad disease groups
Most common CODs in a population follow a predictable age pattern that has been identified 
from decades of epidemiological observation. ANACONDA substep 8.1 checks whether the 
age patterns for the three major disease and injury groups are consistent with what one would 
expect from this research knowledge.

Figure 16 shows age patterns for three major disease and injury groups that differ 
substantially. This is because the risk of dying from the different diseases and injuries covered in each group varies with 
age. For example, most deaths for from diarrhoea and malaria are children, while the victims of most circulatory diseases 
and cancers are older people. The age pattern of death from any given disease or injury should remain relatively the same, 
irrespective of life expectancy in a population, with a few well-known exceptions such as tuberculosis. What changes with 
increasing life expectancy is the proportion of all deaths in each major group (ie the epidemiological transition).

Figure 16: Age pattern of broad disease groups

8
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Understanding substep 8.1

The typical pattern for group I (communicable diseases) is that they cause significant mortality in younger children, 
but thereafter decline to a very low level, only to rise again at older ages, usually above 80, as a result of low 
resistance to infectious diseases. Although group II causes (noncommunicable diseases) also contribute to some 
mortality in children, particularly due to congenital malformations, the vast majority of deaths from these diseases 
can be expected to occur at older ages, typically 50+. For group III (external causes), the proportion of deaths is 
generally highest in young adulthood, particularly for male deaths due to traffic accidents and violence. However, it 
can also be high at older ages, particularly for females, due to falls and other accidents.

The analysis of substep 8.2 brings the three patterns in Figure 16 together in one chart and adds further perspective 
by adding to that the age-specific unusable pattern. The two examples in Figure 17 show for each age group the relative 
importance of the three major disease groups, along with the proportion of cases where the true cause is unknown. Figure 17 
also illustrates the degree of confidence or mistrust we can have in the COD data overall, but particularly at the oldest ages.

Figure 17: Examples of ANACONDA output - distribution of deaths by broad groups, unusable and insufficiently  
specified CODs in males and females by age group

Example 1

Example 2
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Understanding substep 8.2

The first chart in Figure 17 (example 1) shows, as expected, that the highest share of communicable diseases is found 
in children. For ages 10–30, the highest proportion die from external causes such as accidents, violence and suicides. 
From 40 years and onwards, most deaths are due to noncommunicable diseases. Only for the age groups above 75 
years are there 10% or more deaths that are poorly specified. This indicates that this dataset can be trusted and used 
for guiding policy.

In the second chart (example 2), where we do not know for sure the COD of close to half of the deaths in each age 
group, it is still possible to distinguish the same patterns as described above. However, the extensive number of 
unusable and poorly specified codes leads to great uncertainty in what the true COD distribution might be, as it is 
unlikely that the unusable codes have a similar COD distribution across the three groups. This means that, even at this 
broad cause level, the data are not sufficiently reliable to be used for policy.

Step 9: Leading causes of death
All health information systems should, as a bare minimum, be able to produce a table showing 
the leading CODs for the population. Such rankings are an important source of policy-relevant 
information. This information informs decisions on disease- and injury-control priorities 
and interventions to prevent premature mortality, and is useful for monitoring the impact of 
interventions. An analysis of leading CODs can also indicate the reliability and plausibility of 
the COD data.

Step 9 investigates which causes, according to the input data, are the leading CODs in the country and whether these 
are plausible. It also ranks the 20 leading CODs in the input dataset for males and females. If any of these are considered 
unusable causes and belong to levels 1–3 in the severity classification in substep 7.4 (ie they have very high, high or 
medium impact), they are highlighted in red to indicate that they are of no value to guide public policy and are a sign of poor 
certification practices. The fact that they appear among the 20 leading causes in the input dataset should be of concern. 
A light orange highlight on a leading cause indicates that there is a more specific ICD code for the disease and hence the 
COD can be considered as ‘insufficiently specified’ (the fourth level). While it would be desirable for certifying physicians to 
be more specific in assigning a disease subtype in such cases (where it is possible to do so), the consequences for disease 
reduction strategies are minor compared with the other three levels of unusable codes. For example, unspecified pneumonia 
diagnoses may hinder pneumonia control efforts if not further disaggregated, but the additional detail may not be essential 
for policy debates to improve population health (see Table 5).

9
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Rank % of causes ICD code Name of category

1 11.9 I50.- Heart failure

2 5.9 I46.- Cardiac arrest

3 5.7 K72.- Hepatic failure, not elsewhere classified

4 5.7 K74.- Fibrosis and cirrhosis of liver

5 5.5 I61.- Intracerebral haemorrhage

6 5.0 I10.- Essential (primary) hypertension

7 2.7 R54.- Senility

8 2.4 J96.- Respiratory failure, not elsewhere classified

9 2.1 I74.- Arterial embolism and thrombosis

10 2 I70.- Atherosclerosis

11 1.8 I21.- Acute myocardial infarction

12 1.7 R09.- Other symptoms and signs involving the circulatory and 
respiratory systems

13 1.6 R73.- Elevated blood glucose level

14 1.5 N17.- Acute renal failure

15 1.5 J18.- Pneumonia, organism unspecified

16 1.4 C22.- Malignant neoplasm of liver and intrahepatic bile ducts

17 1.3 I63.- Cerebral infarction

18 1.3 B19.- Unspecified viral hepatitis

19 1.2 I64.- Stroke, not specified as haemorrhage or infarction

20 1.2 N18.- Chronic renal failure

Table 5: Example ANACONDA output: leading COD, (with unusable (red) and insufficiently 
specified (orange) codes for COD highlighted

Understanding substep 9.1

The more frequently these unusable and insufficiently specified categories appear in the list of leading causes, and 
the higher they are ranked, the poorer is the quality of the input data and the more limited the data will be in providing 
essential health intelligence about the true picture of leading CODs in the population.
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(4) Overall data quality index: VSPI(Q)

Step 10: Vital Statistics Performance Index

ANACONDA offers a large number of indicators to flag various quality aspects of mortality 
and COD data. One single summary score of the overall performance of a CRVS system is 
useful for monitoring CRVS system improvement. Such a score should take into account all 
the essential components of data quality, and weight them according to their importance in 

affecting the overall utility of the data for policy development. 

In this step, ANACONDA automatically calculates a summary index of mortality data quality, known as the VSPI(Q). The 
VSPI is based on a broader metric of CRVS data utility developed by Philips et al (2014), which also includes a component  
to reflect the timeliness of the data. This component is not included in the VSPI(Q), which focuses on the quality of the input 
data, and assesses CRVS system performance against five key measures of data quality, all derived from the input data:

1. completeness of death registration (as predicted from the input data; see substep 2.2)

2. fraction of unusable codes in the data (based on the four-level classification of unusable codes according to their 
implications for guiding policy, with levels 1, 2 and 3 given twice as much weight as level 4 in the overall score for this 
component)

3. amount of detail in the COD list used to tabulate data

4. extent to which age and/or sex are missing in the data

5. number of biologically implausible underlying causes.

Scores on each of these five components are then weighted according to their importance in determining the correct COD 
distribution in a population, and combined into a VSPI(Q) score, ranging from 0 to 100. The higher the score, the better the 
overall quality of the mortality data.

The VSPI(Q) calculated in this way does not require any additional input information to what is already required as input  
into ANACONDA, at least for national applications. The VSPI(Q) can also be readily calculated at the subnational. In in this 
case, given the likelihood that mortality levels will vary across a country, it is recommended that differences in the level of 
child mortality in different regions be included as input into the model for predicting completeness of death registration 
(see step 2).

Figure 19: Example ANACONDA output – the Vital Statistics Performance Index for Data Quality

10

Country:

Region: 7 (Latin 
America/
Caribbean)

Summary score: 78.10%

Classification: High

VSPI Quality Components Score

Component Score 
(weighted)

Quality of cause of 
death reporting

81.3

Completeness of 
death reporting

97.8

Level of cause-
specific detail 
available

98.2

Quality of age and 
sex reporting

100.0

Biologically 
plausible COD

100.0
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Understanding step 10

Figure 19 shows the output from step 10 in ANACONDA. The panel on the left gives the overall VSPI(Q) score, as 
well as an evaluation of the score in terms of five performance categories (very low, low, medium, high, very high) 
(Mikkelsen et al 2015). The weighted scores for each of the five components of the index are also shown. These 
individual component scores are useful for pinpointing the most important failings that affect the system and hence 
for establishing priorities for action. Since the component scores are simply multiplied to yield the overall VSPI(Q) 
score, they are often individually higher than the overall score.

The pie chart in Figure 19 shows the specific contribution of each component (expressed as a percentage) to the 
gap between the VSPI(Q) score and 100%. The larger the share a component has of the pie, the more important that 
component is in bringing down the overall VSPI(Q) score for the country, and the more urgent are efforts to improve it 
to increase the overall quality of the input data.
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Summary
ANACONDA is a simple, yet very informative, tool for countries to use to quickly check the quality of the data they 
routinely collect on mortality and CODs. Timely and accurate COD statistics have enormous policy value, so it is important 
that governments understand the likely biases and errors in their routine mortality data collections, and take urgent and 
systematic steps to correct them. ANACONDA offers a structured, sequential framework to help countries identify the main 
problems and errors in their mortality data. At the same time, it serves as a teaching tool to train data producers and analysts 
to think critically about data quality, and provides them with the evidence needed to carry out improvement actions.

This guidance document details the logic and rationale underlying a systematic approach to interrogating mortality statistics 
to assess data quality issues. It gives users of ANACONDA an in-depth explanation of the different components of the 
framework, why they were included, what they tell us about the data and how to interpret the results. 

Large datasets generated for public health purposes will never be error-free. There will always be deaths that will be classed 
as ill-defined, because the underlying cause cannot be identified. This is more likely to be the case for the older ages, when 
multiple morbid conditions are often present around the time of death, and correctly deciding on the sequence of events 
that led to death is difficult, if not impossible. Death certification is not a precise science, but one where a physician is asked 
to apply their clinical knowledge to determine the underlying cause that led to death. In many cases, the physician may not 
have been the treating physician and has little or no knowledge of the clinical history of the deceased. Yet, even imperfect 
COD data can provide some information for policy if analysts can apply the methods outlined in the ANACONDA tool to 
assess the probable extent and patterns of biases in the data. 

By regular applications of ANACONDA, and careful interpretation of the outputs as suggested in this guide, we expect that 
users will soon develop a culture of critical appraisal of mortality statistics. They will gain the confidence and competence 
needed to interpret their routine mortality datasets according to this guide’s comprehensive processes and principles. Apart 
from evaluating how reliable the input mortality dataset is, ANACONDA will very clearly highlight the areas where the data 
are flawed and in need of urgent intervention to rapidly strengthen health information and civil registration systems. 

Some of the interventions that are likely to be required to strengthen existing systems and generate better mortality data 
are described by Mikkelsen et al (2016). Foremost among these is the need to apply a systematic and strategic approach 
to training doctors in the correct certification of CODs using the latest International Form of the Medical Certificate of 
Causes of Death recommended by WHO. Doctors often do not receive adequate training in the correct completion of the 
COD certificate, and often do not appreciate the critical public health importance of the information compiled from these 
certificates. Training strategies for medical students or recent medical graduates might have to be carefully evaluated, 
and strengthened as necessary. The primary aim of such strategies is to dramatically reduce the extent of unusable or 
unspecified COD codes in the data, and thus substantially improve the value of the data for national public health programs 
and policies.

The other set of interventions that ANACONDA will likely indicate are those designed to strengthen death registration 
practices, including adopting more efficient and equitable procedures for registering deaths, and for ensuring that the 
critical information about each death, including the precise age and sex of the decedent, is correctly recorded. Subnational 
application of the tool will help to identify those sectors of the population where registration completeness is particularly 
poor. In all cases, it is likely that death registration will be lowest among children, indicating the need for a careful review of 
current registration practices and disincentives.

Finally, it is important to appreciate that rapid change in the quality of COD statistics is possible, if there is firm government 
commitment to improve data quality and to use the data for informing public policy. Several countries, including Turkey, 
South Africa and Brazil, have demonstrated that significant change is possible within a short time with targeted application 
of specific CRVS strengthening methods (Mikkelsen et al 2015). ANACONDA will help countries identify the need for these 
strategies, and provides a convenient means of monitoring progress with them, particularly if it is integrated into the annual 
routine data production process.
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ANNEX 1: ANACONDA’s 10 steps

1
Data input checks
Provides an overview of the input data that allows you to check for any potential errors 
or inconsistencies. Tabulates deaths by standard International Classification of Diseases 
(ICD) and Global Burden of Disease (GBD) tabulation lists, by age and sex.

2
Crude death rate
The estimated and calculated crude death rates (CDR) from the input data are used to 
assess the extent of potential underreporting of deaths.

3
Age-specific mortality rates
The age- and sex-specific mortality rates are shown in a log plot. Inconsistencies 
such as a nonlinear line after age 35 should be investigated as they could indicate 
incompleteness of death reporting. The male rates should be consistently higher for all 
ages, especially between 20 and 35 years of age.

4
Age distribution of deaths
The age distribution of deaths should show a higher concentration of deaths among 
children under 1 year of age, be lowest at ages 5–14, be followed by a rapid increase for 
ales in their early twenties, and then gradually increase with age for males and females. 

5
Completeness of child mortality
This step compares the calculated level of child mortality from the input data with 
external estimates from censuses and surveys, allowing you to calculate the relative 
difference between the two. This gives an estimate of the extent of underregistration  
of child deaths. This step also produces a life table from the input data, which includes  
life expectancy.
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6
Mortality by broad GBD groups
An important first step in assessing the quality of cause of death (COD) data is to 
look at the distribution of deaths by three broad cause groups (communicable, 
noncommunicable, external) and assess whether they are consistent with expected 
patterns given current mortality conditions. This step also shows the number of deaths 
assigned to unusable and insufficiently specified (‘garbage’) causes, which is an 
important indicator of data quality. 

7
Quality of cause of death data
This step analyses the extent of COD diagnoses in the input data that are of no or 
limited use because they do not accurately reflect the true underlying COD. The 
unusable causes of death are further classified into types of errors, and into severity 
levels according to the impact they can have on misguiding policy and planning. 

8
Age pattern of mortality by broad groups
As the risk of dying from different diseases and injuries changes with age, the age 
pattern of deaths within each of the three broad cause groups will also be different. If 
you do not see a distinct age pattern for each of these three groups, you are likely to 
have problems with misdiagnosis in the input data. 

9
Leading causes of death
A useful way to gain an overview of the policy utility of mortality data is to rank the 
leading COD. There should be no unusable causes (highlighted in red or orange) 
ranked among the 20 leading causes of death. 

10
Vital Statistics Performance Index
The Vital Statistics Performance Index (VSPI) is a single summary score of the 
performance of a vital statistics system, which takes into account five essential 
components of data quality. The overall VSPI score can be broken down into scores 
for each of the five different components. The lower the component scores (bigger 
segments of the pie chart), the higher priority should be given to that component in 
strategies to improve the data. 
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ANNEX 2: Model for estimating completeness
Step 2 is designed to check the possible extent of underregistration of deaths across all ages and both sexes. This is done in 
two ways:

1. First, by calculating the crude death rate (CDR, defined as total deaths total midyear population x 1000) from the input 
data and comparing it with estimates of the actual level of the CDR for the same country-year from the Global Burden  
of Disease (GBD) study. A CDR <5 in any population where the risk of child mortality (ie risk of death before age 5; see 
step 5) is >30/1000 live births should be viewed suspiciously and is likely to be indicative of underregistration of deaths 
in that dataset.

2. Second, by using a new method that models the level of the reported CDR for a given population as a function of the key 
drivers of the CDR, namely population age composition and the overall level of mortality in a population (as approximated 
by the level of child mortality).8 The model (in logit space) is as follows:

Model equation:

logit(Completeness) = (RepCDR2 * –0.0187471) + (RepCDR * 0.6125569) + (%65plus * –12.58245) + (ln(5q0) *–1.134923) + 
(Compl_5q0 * 2.319505) + (Year * –0.0184299) + 31.40303 + γ

where:

 n Completeness is the estimated proportion of all deaths in the population that are registered or otherwise notified  
(ie. it is a fraction)

 n RepCDR is the CDR calculated from the input data

 n %65plus is the fraction of the input population aged 65 and over

 n ln(5q0) is the natural log of the probability of child death before age 5 (per 1000 live births), used as an overall measure 
of mortality levels in the population

 n Compl_5q0 is the estimated proportion of under-5 deaths in the population that are registered or notified

 n Year is the calendar year of the data

 n γ is a country-level random effect. Each country that was used in the data to develop this statistical model has a random 
effect, which is a number that adjusts the completeness estimate based on systematic differences in completeness 
between countries that are not captured by the input data.

It is important that the level of 5q0 used in the model is as close as possible to the true level of child mortality in the 
population; this will generally mean that the rate calculated from the life table in step 5.2 cannot be used for this purpose. 
Rather, we use the level from the comparator (Inter-agency Group for Child Mortality Estimation) or a value input by the user 
based on censuses and surveys. To calculate the completeness of under-5 deaths, ANACONDA automatically uses the data in 
step 5.1 (ie the 5q0 from the registration data divided by the 5q0 from the comparator).

The graphs below show the modelled relationships between CDR (calculated from input data) and predicted completeness of 
death registration or notification in the population at different levels of child mortality and population aged 65+. These levels 
(ie 5q0 of 40/1000 and 6% aged population) have been chosen as examples to illustrate how completeness is likely to vary 
according to commonly observed values of 5q0 and percentage 65+.

8 Adair T & Lopez AD (2017). Estimating the completeness of death registration: an empirical method. CRVS technical outcome series. University of Melbourne, Civil 
Registration and Vital Statistics Improvement Group, Melbourne. [Draft document in development].



C
R

V
S

 technical guide

37Guidance for assessing and interpreting the quality of mortality data using ANACONDA | Version 1017-01

This modelled relation is more applicable to estimating levels of death registration/notification completeness less than 90%; 
above that level of completeness, the CDR can (and does) vary significantly, often from 5/1000 to 12/1000, as a result of 
differences in the extent of population ageing.
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Notes
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